Discipline	MANUALLY PROGRAMING OF (semester	CNC MACHINES, code: 37, summer
Specialties:	 "Computerized manufacturing technologies", "Manufacturing engineering and technologies", "Production engineering" 	
ECTS credits: 5	Form of assessment: Exam - test	
Lecturer	Assoc. Prof. Ph.D. / scientific title/ STOYAN DIMITROV SLAVOV /name/ Room 703M Phone: +359 383 690 E-mail: <u>sdslavov@tu-varna.bg</u>	
Department	MANUFACTURING TECHNOLOGIES AND MACHINE TOOLS	
Faculty	FACULTY OF MANUFACTURING EN	NGINEERING AND TECHNOLOGIES

Learning objectives:

The primary focus of this course is on manual programming of computer numerical control (CNC) machine tools. Students learn what CNC-machines are, what they can do, and how they do it. Beginning with the basic concepts of program structure, students learn how to write, edit, and debug NC-programs and use the programs on a CNC- machine to produce a part. Programs become more complex as the semester progresses and require more sophisticated programming techniques. Laboratory exercises are conducts in the "CAD/CAM/CNC systems" laboratory of the department, using CNC lathe and CNC-mill machines. The toolpaths described by NC-programs are previously verified by hardware and software simulators, such as HAAS and CIMCO Edit. As an outcome of successful completion of the course, the student should: understand the nature, applications, advantages, and disadvantages of numerical control machine tools. Understand and follow safety-related procedures for part design and machine operation. Manually write, edit, debug, and use NC-programs to produce a piece part. Utilize canned cycles, loops, and subroutines. Set up, communicate with, and safely operate NC-machines. Select cutters, cutting and spindle speeds, and feedrates for both CNC-mill and CNC-lathe programs. Understand basic tooling and part holding requirements.

CONTENTS:			
Training Area		Hours laboratory exercises	
 Know your machine from a programmer's viewpoint 1: Lathe and mill machine configurations 2: Visualizing program execution 3: Program zero and the rectangular coordinate system 4: Introduction to programming words 		4	
You must prepare to write programs		4	

5: Preparation steps for programming		
Understand the motion types		4
6: Programming the three most basic motion types		I
Know the compensation types		4
7: Introduction to compensation		Т
8: Tool length compensation		
9: Cutter radius compensation		
You must provide structure to your CNC programs		4
10: Introduction to program structure	4	I
11: Types of program format		
• Special features that help with programming of the turning and mill		10
CNC machines		10
12: Turning and boring canned cycles		
13: Threading canned cycles		
14: Hole-machining, grooving and cut-off canned cycles		
15: Working with subprograms		
16: Other special programming features in turn and mill CNC-machines		
TOTAL: 60 h	30	30